get_parameter_dataframe

source

.get_parameter_dataframe(
   parameter, path, file
)

Initializes the seaweed model and returns the dataframe with the parameter for all the grid sections

Arguments

  • parameter : the parameter to construct the dataframe for
  • path : The path to the file
  • file : The file name

Returns

  • df : pandas.DataFrame

time_series_analysis

source

.time_series_analysis(
   growth_df, n_clusters, global_or_country
)

Does time series analysis on the dataframe All the time serieses are clustered based on their overall shape using k-means Inspired by this article: https://www.kaggle.com/code/izzettunc/introduction-to-time-series-clustering/notebook

Arguments

  • growth_df : pandas.DataFrame
  • n_clusters : int - the number of clusters to use

Returns

  • labels : list - the labels for each time series
  • km : TimeSeriesKMeans - the k-means object

elbow_method

source

.elbow_method(
   growth_df, max_clusters, global_or_country, scenario
)

Finds the optimal number of clusters using the elbow method https://predictivehacks.com/k-means-elbow-method-code-for-python/

Arguments

  • growth_df : pandas.DataFrame
  • max_clusters : int - the maximum number of clusters to try

Returns

None, just plots the elbow method and saves it


lme

source

.lme(
   scenario
)

Calculates growth rate and all the factors for the lme and saves it in files appropriate for the plotting functions

Arguments

None

Returns

None


grid

source

.grid(
   scenario, global_or_country, with_elbow_method = False
)

Calculates growth rate and all the factors for the grid and saves it in files appropriate for the plotting functions

Arguments

None

Returns

None